

Liquid Hydrogen Distribution Technology HYPER Closing Seminar

Lutz Decker Brussels, December 11, 2019

Making our world more productive

Agenda

- 1. Linde's Product & Service Portfolio for Liquid Hydrogen Distribution
- **2.** LH_2 / GH_2 Distribution and Storage
- **3.** Linde manufacturing LH₂ Products
- 4. HRS LH₂ Fueling Station
- 5. Conclusion & Outlook

Linde's Hydrogen Value Chain for H₂ **Mobility** Linde Covers the Full Value Chain!

Linde

Agenda

- 1. Linde's Product & Service Portfolio for Liquid Hydrogen Distribution
- **2.** LH_2 / GH_2 Distribution and Storage
- **3.** Linde manufacturing LH₂ Products
- 4. HRS LH₂ Fueling Station
- 5. Conclusion & Outlook

Physical properties of hydrogen Transport & storage – density differences

Liquid and gaseous hydrogen Comparison of energy density

Installation at DLR, Cologne, Germany

- Hydrogen in its liquid form allows a significant reduction of the storage footprint!
- Total weight of the equipment and supporting structures are equally reduced.
- Rule of thumb: gaseous hydrogen requires 4 time more footprint than liquid
- → Where size & weight matter, liquid Hydrogen offers benefits.

1/7/2020 Liquid Hydrogen Distribution Technology, L. Decker, HYPER, Brussels

How to supply Hydrogen? LH₂ versus CGH₂

© Norled, ferry boat 1/7/2020 Liquid Hydrogen Distribution Technology, L. Decker, HYPER, Brussels

Liquid and gaseous Hydrogen Comparison of logistical aspects

Method	Facts	+ Pros	- Cons
CGH ₂ Trailer	 Transport at 20MPa & above Capacity: ~900kg Time to fill: 4 hours Time to off-load: 45 minutes (tube trailer swap!) 	- Economical transport for short to medium distances	 Comparatively low capacity (high delivery frequency) Comparatively large on-site footprint Residual gas in trailer (=waste) the higher the pressure in the supply chain, the higher the amount/tonnage of CGH₂ in circulation!
LH ₂ Trailer	 Transport at -253°C Capacity: ~4,000kg Time to fill: 4 hours Time to off-load: ~1.0 hour 	 Economical transport for medium to long distances Comparatively small footprint 	 Comparatively high energy demand (~10kWh/kg for liquefaction) Some liquid needs to remain in the
LH ₂ Container	 Transport at -253°C Capacity: ~3,000kg Time to fill: 3 hours Time to off-load: ~0.5 hours (container swap!) 	 Economical transport for medium to long distances Comparatively small footprint, By remaining at customer site, 1x LH₂ transfer can be avoided → less boil-off! Overseas transport possible Longer holding times possible (LIN shield) 	distribution equipment to keep it cryogenic cold during return to the LH₂ source! → usable volume: ≤ 90%

Agenda

- 1. Linde's Product & Service Portfolio for Liquid Hydrogen Distribution
- **2.** LH_2 / GH_2 Distribution and Storage
- **3.** Linde manufacturing LH₂ Products
- 4. HRS LH₂ Fueling Station
- 5. Conclusion & Outlook

Linde Engineering, Schalchen Plant in Germany The Manufacturing Facility for Cryogenic Equipment!

- Location: about 100 km east of Munich
- 25 workshops, large indoor manufacturing area (~65,000m²)
- All necessary disciplines available: engineering, sales & production, etc.
- High-quality materials only: Aluminum & Stainless Steel

Linde Manufacturing – Product Portfolio Vast experience in the field of cryogenic plant equipment!

Custom engineered Products

Brazed Aluminum HX & Cold boxes

Coil-wound HX

Standardized Products

Vaporizers

Cryogenic Storage Tanks

Liquid Hydrogen Tanks – Examples Design for Industrial Applications

Key Data

- Inner volume: 71 m³ (references up to 270m³)
- Design pressure: 12 bar(g)
- Storage capacity: **4,600 kg LH**₂ (1bar, 5% ullage)
- Vacuum-perlite insulation
- Integrated cryogenic valves
- Designed for industrial applications with high demand (electronics, chemical, etc.)
- Horizontal & vertical design

Performance

— Boil-off ratio: <44 kg/day (<0.95%/d)</p>

Applications

Typical industrial applications with <u>high</u> Hydrogen demand

Liquid Hydrogen Tanks – Examples Optimized Design for Fueling Stations

Key Data

- Inner volume: 11.5 m³
- Design pressure: 6 bar(g)
- Storage capacity: **900 kg LH**₂ (1bar, 5% ullage)
- Special integrated cryogenic valves
- Multi-layer insulation inside vacuum space
- Especially designed to fit into a 40ft container, and for fueling stations

Performance

— Boil-off ratio: <**5.5 kg/day** (<0.6%/d)

Applications

Fueling stations, with <u>low to medium</u> Hydrogen demand

Liquid Hydrogen Tanks – Examples Special Design for extremely low Boil-off!

Key Data

- Inner volume: 6,000 liters
- Design pressure: **12 barg**
- Storage capacity: 400 kg LH₂ (1bar, 5% ullage)
- Special integrated cryogenic valves
- Special insulation material inside vacuum space
- All necessary connections for LH₂ pump

Performance

— Boil-off ratio: <2 kg/day (<0.5%/d)</p>

Applications

 Fueling stations, with <u>low</u> Hydrogen demand (tank for the early market phase)

1/7/2020

Liquid Hydrogen Tanks – Examples Larger Capacities for Bulk Storage

Key Data

- Inner volume: 300 m³
- Design pressure: **3.5 barg**
- Storage capacity: **19.3 t LH**₂ (1bar, 10% ullage)

Performance

— Boil-off ratio: <58 kg/day (<0.3%/d)</p>

Spherical Tanks: Key

Key Data

- Inner volume: 1100 2300 m³
- Design pressure: 2.6 barg
- Storage capacity: **70.2 145** t LH₂ (1bar, 10% ullage)

Performance

— Boil-off ratio: <70 - 145 kg/day (<0.1%/d)</p>

Linde Liquid Hydrogen Container HYLICS™

Key Technical Data

Frame Size	40ft Container
Design	UN Portable Tank
Design Pressure	12 bar(g)
LH2 capacity	3,000 kg (5% ullage)
Option	LIN-Shield

Linde Liquid Hydrogen Trailer More Tons of LH₂ on the Road!

Key Technical Data			
Vessel length	13.7 m		
Approvals	TPED / ADR 6.8		
Design Pressure	12 bar(g)		
LH2 capacity	~4,000 kg (5% ullage)		
	No LIN-Shield		

Agenda

- 1. Linde's Product & Service Portfolio for Liquid Hydrogen Distribution
- **2.** LH_2 / GH_2 Distribution and Storage
- **3.** Linde manufacturing LH₂ Products
- 4. HRS LH₂ Fueling Station
- 5. Conclusion & Outlook

Physical properties of hydrogen Ideal compression work – pump – vs - compressor

Liquid hydrogen fueling station Type CP90

Performance

- Footprint: 6.10 x 3.40m
- Capacity: Up to 50kg/hr.
- Bulk storage capacity: 400kg LH₂
- MAWP: 100 MPa
- Energy consumption (total): 45kW
- Specific energy consumption: 1.2 kWh/kg $H_2 \rightarrow$ Energy saving of ~ 70% ¹
- Boil-off: 4 kg/day, utilized for stand-by cooling
- Refueling protocol: SAE J2601-A70 and CEP
- Refueling performance: 6 FCEV cars/hr.
- Consequent development for installations at existing gasoline/ diesel retail stations, based on joint workshops with oil companies Shell, Total, OMV

¹ Compared to a conventional piston compressor

Cryogenic piston pump How it works

Special design provisions :

- Super insulated Design
- Frequency drive (up to 4 Hz)
- Pump immersed in liquid hydrogen
- Double stage compression with LH₂ feeding piston

System function Type CP 3.0

Liquid hydrogen fueling station Installation of type CP90 in Munich, Germany

Key Features

- Start of operation: Q2/2017 and Q3/2017
- Dispensing lines: 1x 70 MPa PV
- Technology: Cryo pump CP90

- Main user: CEP fleet, FCEV passenger cars
- Small footprint than CNG station
- 400kg LH₂ storage; equivalent to 40,000km of driving

Agenda

- 1. Linde's Product & Service Portfolio for Liquid Hydrogen Distribution
- **2.** LH_2 / GH_2 Distribution and Storage
- **3.** Linde manufacturing LH₂ Products
- 4. HRS LH₂ Fueling Station
- 5. Conclusion & Outlook

Conclusion & Outlook

Drivers

- Regulations and policies will continue to change the energy mix and will require a reduction of emissions in the various modes of transportation.
- Hydrogen & Fuel cell technology has a set of advantages over other zero emission technologies.

Liquid Hydrogen

- LH₂ is not a "one-size-fits-all" solution, but is most efficient especially for larger
 FC power units, typically required for ships, energy storage systems, trains, etc.
- Supply chains for LH₂ have to be well thought-through, in order to reach an optimum between CAPEX and OPEX.

Next steps and key success factors

- Our innovations will focus on:
 - High-performing mobile & stationary LH₂ distribution equipment to make transportation and loading/unloading as simple as possible
 - Minimization of boil-off losses over the complete supply chain, incl.
 CAPEX/OPEX considerations

Thank you for your attention.

Making our world more productive

Linde's Hydrogen Value Chain for H₂ **Mobility** Liquid Hydrogen Fueling Station Type "CP90"

1/7/2020 Latest Global Trend in Liquid Hydrogen Production, L. Decker, HYPER, Brussels